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A pentacoordinate 1,2-oxaphosphetane has been widely accepted
as the intermediate of the Wittig reaction, which is well-known as
a useful method for olefin formation.1 On the other hand, reactions
of stibonium ylides (heavier congeners of phosphonium ylides) with
carbonyl compounds afford olefins and oxiranes, depending on the
ylide used.2 The difference in reactivity between phosphonium and
stibonium ylides toward carbonyl compounds has been ascribed to
different reaction intermediates. The olefin and the oxirane are
believed to be formed from the corresponding oxetane containing
a pentacoordinate group 15 element at the position adjacent to the
oxygen atom and from the correspondinganti-betaine, respectively.
Although the reaction of a stibonium ylide with a carbonyl
compound has been investigated by theoretical calculations based
on the above assumptions,3 there has been no report of the isolation
of an intermediate. We herein describe the synthesis and the
properties of a pentacoordinate 1,2-oxastibetane, which is an
antimony analogue of a pentacoordinate 1,2-oxaphosphetane and
a formal [2+ 2] cycloadduct of a stibonium ylide and a carbonyl
compound.

Benzylstiborane1 bearing the Martin ligand,4 which was
synthesized by the reaction of chlorostiborane25 with benzylmag-
nesium chloride, was allowed to react successively with LiTMP
and trifluoroacetophenone in benzene at room temperature to give
a mixture of 2-hydroxyalkylstiboranes3a and3b. After separation
by silica gel column chromatography, treatment of3a and3b with
bromine gave bromo(2-hydroxyalkyl)stiboranes4a and4b, which
were allowed to react with NaH to afford the isomeric pentacoor-
dinate 1,2-oxastibetanes5a and 5b, respectively (Scheme 1).
Although 5b was unstable toward moisture and could not be
isolated,5a was successfully isolated by recrystallization from
hexane as colorless crystals.6

X-ray crystallographic analysis of5a7 revealed that it has a
distorted trigonal bipyramidal structure with two oxygen atoms at
the apical positions and three carbon atoms at the equatorial
positions. Moreover, the relative configuration of the phenyl group
at the 3-position is cis to both the 4-tert-butylphenyl group at the
2-position and the phenyl group at the 4-position of the 1,2-
oxastibetane ring (Figure 1). The1H, 13C, and19F NMR spectra
(CDCl3) of 5a were consistent with the crystal structure. At room
temperature,5a easily undergoes epimerization at the Sb atom by
pseudorotation to give the equilibrium mixture of5aand its epimer
in a ratio 5:1.8

Thermolysis of5a in o-xylene-d10 at 220°C for 17 h gave the
corresponding oxirane6 (90%) with retention of configuration and
stibine7 (89%) along with a small amount of 1,1,1-trifluoro-3,3-
diphenyl-2-propanone (5%) andtert-butylbenzene (5%), the latter
two of which were omitted in Table 1 (entry 1). Similar results
were obtained when thermolysis was carried out in CD3CN (entry
4). In both cases olefin8 was not detected, which is in marked
contrast to the thermolysis of pentacoordinate 1,2-oxaphosphetanes.1

The formation of6 with retention of configuration strongly suggests

that the reaction occurs via apical-equatorial ligand coupling.9

Although the mode of such ligand coupling is thermally forbidden
according to the Woodward-Hoffmann rules, Morokuma et al.
reported that this process is thermally favored over other symmetry-
allowed ligand coupling processes in the case of BiH5, which
involves a zwitterionic transition state.8,10 Since a polar transition
state was strongly supported by the solvent effect (entries 2 and
3), it is most likely that the formation of6 proceeds via apical-
equatorial ligand coupling through polar transition stateA (Scheme
2).

Thermolysis of5a in the presence of LiBr or LiI in CD3CN at
140 °C provided a mixture of6, 7, and9 (entries 5 and 6). The
formation of6 and9 contrasts the reaction without the salts which
affords only6 (entry 4). Taking into consideration the results of
the thermolyses with LiI and (n-Bu)4NBr (entries 6 and 7), it is
concluded that both lithium cation and bromide ion play an
important role in the formation of9, which requires the interaction

Scheme 1 a

a Reaction conditions: Ar) 4-t-Bu-C6H4, a: R1 ) Ph, R2 ) CF3, b:
R1 ) CF3, R2 ) Ph. i) PhCH2MgCl (1.2 equiv), Et2O, 0°C, 2 h; ii) LiTMP
(2.2 equiv), benzene, rt, 12 h; iii) Ph(F3C)CdO (2.2 equiv), rt, 30 min; iv)
H3O+; v) SiO2 column chromatography; vi) Br2 (2.0 equiv), CHCl3, rt, 1
h; vii) NaH (4.0 equiv), THF, rt, 2 h; viii) PhLi, THF, rt, 1 h; ix) H3O+.

Figure 1. ORTEP drawing of5a with thermal ellipsoids plotted at 50%
probability. Selected bond lengths (Å) and angles (deg): Sb1-O1, 2.054(7);
Sb1-O2, 2.038(7); Sb1-C1, 2.144(9); Sb1-C3, 2.103(10); Sb1-C4,
2.106(10); C1-C2, 1.575(13); O1-C2, 1.440(11); O1-Sb1-O2, 165.4(3);
O1-Sb1-C1, 69.7(3); Sb1-O1-C2, 96.2(5); Sb1-C1-C2, 88.7(5); C1-
C2-O1, 105.4(7). One of the independent molecules of5aand the hydrogen
atoms are omitted for clarity.
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of a lithium cation and an oxygen atom of5a, and the nucleophilic
attack of bromide ion on the antimony atom. Oxirane9 can be
obtained by the backside attack of the oxide anion of theanti-
betaine type intermediateB (Scheme 2).

Interestingly, thermolysis of5a in the presence of lithium
tetraphenylborate‚3dimethoxyethane (LiBPh4‚3DME) gave olefin
8 (85%) selectively, together with5a (10%) and trace amounts of
6, 7, and9 (entry 8). Other products containing antimony and the
Martin ligand were obtained as a complex mixture, and they could
not be identified by1H and19F NMR spectroscopy, but FAB-MS
of the reaction mixture showed a peak atm/z 573, which could be
assigned to thetert-butylphenyl(phenyl)benzoxastibonium ion. It
is expected that formation of8 involves the migration of a phenyl
group from the boron atom of tetraphenylborate to the antimony
atom of5a, followed by thermal decomposition of the hexacoor-
dinate 1,2-oxastibetanideC (Scheme 2).11 Actually, C (which was
alternatively generated by the reaction of5a with PhLi in THF at
0 °C) gave8 (74%) upon heating at 140°C after changing the
solvent from THF to benzonitrile (entry 9). Hydrolysis ofC
provided 2-hydroxyalkylstiborane10a (94%) (Scheme 1), and the
reaction of10awith LiH gaveC at room temperature quantitatively.
These results suggest that hexacoordinate 1,2-oxastibetanideC is
an intermediate in the olefin formation reaction from5a in the
presence of LiBPh4‚3DME.

We have found that thermolyses of a pentacoordinate 1,2-
oxastibetane under suitable conditions give the corresponding

oxirane, with both retention and inversion of configuration, and
the corresponding olefin. It is interesting that three different products
can be selectively obtained from a single compound by ap-
propriately tuning the conditions.
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Table 1. Thermolyses of 5a in the Presence of Saltsa,b

yieldsc (%)

entry solvent time (h) additive 5a 6 7 8 9

1 o-xylene-d10 17 none 5 90 89 0 0
2 o-xylene-d10 48 none 98 2 2 0 0
3 CD3CN 48 none 52 46 48 0 0
4 CD3CN 112.5 none 19 80 80 0 0
5 CD3CN 10 LiBr 12 10 88 0 71
6 CD3CN 10 LiI 56 18 44 0 19
7 CD3CN 10 (n-Bu)4NBr 68 13 32 2 18
8 CD3CN 10 LiBPh4‚3DME 10 <1 <1 85 <1
9 PhCN 6 PhLi 0 0 0 74 0

a Thermolyses were carried out at 220°C for entry 1 and 140°C for
entries 2-9. b Rearranged ketone andtert-butylbenzene were omitted for
clarity in Table 1.c Yields were calculated on the basis of the molar ratios
with respect to5a. Unreacted starting material5a was recovered.

Scheme 2
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